skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Yunfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-of-the-art RFID localization systems fall under two categories. The first category operates with off-the-shelf narrowband RFID tags but makes restrictive assumptions on the environment or the tag’s movement patterns. The second category does not make such restrictive assumptions; however, it requires designing new ultra-wideband hardware for RFIDs and uses the large bandwidth to directly compute a tag’s 3D location. Hence, while the first category is restrictive, the second one requires replacing the billions of RFIDs already produced and deployed annually. This paper presents RFind, a new technology that brings the benefits of ultra-wideband localization to the billions of RFIDs in today’s world. RFind does not require changing today’s passive narrowband RFID tags. Instead, it leverages their underlying physical properties to emulate a very large bandwidth and uses it for localization. Our empirical results demonstrate that RFind can emulate over 220MHz of bandwidth on tags designed with a communication bandwidth of only tens to hundreds of kHz, while remaining compliant with FCC regulations. This, combined with a new super-resolution algorithm over this bandwidth, enables RFind to perform 3D localization with sub-centimeter accuracy in each of the x/y/z dimensions, without making any restrictive assumptions on the tag’s motion or the environment. 
    more » « less
  2. Battery-free sensors, such as RFIDs, are annually attached to billions of items including pharmaceutical drugs, clothes, and manufacturing parts. The fundamental challenge with battery-free sensors is that they are only reliable at short distances of tens of centimeters to few meters. As a result, today’s systems for communicating with and localizing battery-free sensors are crippled by the limited range. To overcome this challenge, this paper presents RFly, a system that leverages drones as relays for battery-free networks. RFly delivers two key innovations. It introduces the first full-duplex relay for battery-free networks. The relay can seamlessly integrate with a deployed RFID infrastructure, and it preserves phase and timing characteristics of the forwarded packets. RFly also develops the first RF-localization algorithm that can operate through a mobile relay. We built a hardware prototype of RFly’s relay into a custom PCB circuit and mounted it on a Parrot Bebop drone. Our experimental evaluation demonstrates that RFly enables communication with commercial RFIDs at over 50 m. Moreover, its through-relay localization algorithm has a median accuracy of 19 centimeters. These results demonstrate that RFly provides powerful primitives for communication and localization in battery-free networks. 
    more » « less
  3. This demo presents RFind, a system that enables fine-grained RFID localization via ultra-wideband emulation. RFind operates by measuring the time-of-flight -- i.e., the time it takes the signal to travel from an antenna to an RFID tag. To do so, it emulates an ultra-wide bandwidth on today's narrowband RFIDs without requiring any hardware modification to the tags. It then uses the large emulated bandwidth to estimate the time-of-flight and localize RFIDs. In contrast to past RFID localization proposals, RFind can operate in multipath-rich environments without reference tags and without requiring tag or antenna motion. The demo will allow users to move RFID-tagged objects to any location in line-of-sight, non-line-of-sight, and multi-path rich settings and check that the system can accurately localize the objects. 
    more » « less